
Nico Harms - 2024-01-30

MarMic 2024
Git, GitHub/Gitlab

Introduction
In this workshop, we'll explore
the fundamentals of modern
version control and collaboration
using Git, along with platforms
like GitHub and GitLab.

MarMic - Git, GitHub/Gitlab
Introduction

• Who is this for?

• This workshop is crucial for software developers, data scientists, and anyone involved in
collaborative projects.

• Why is this important?

• In today's fast-paced and interconnected world, effective collaboration, code
management, and version control are essential.

• By the end of this workshop, you will:

• Create and manage Git repositories.

• Know how to collaborate with team members and peers on shared projects.

MarMic - Git, GitHub/Gitlab
Schedule

• Welcome and Introduction

• Understanding Version Control

• Introduction to Git

• Git Basics

• Git Workflow

Day 1 - Introduction to Git and Basic Concepts

• Recap of Day 1

• Git Branching and Merging

• Remote Repositories

• Collaborative Workflows

• Advanced Topics (time permitting)

Day 2 - Branching, Collaboration, and Advanced Topics

Day 1
Introduction to Git and Basic Concepts

Understanding Version Control

Understanding Version Control
The Problem

• Have you ever found yourself juggling multiple versions of a file, like
"document.txt," "document_v2.txt," and „document_final.txt"?

Understanding Version Control
The Solution

• A version control system is an invaluable tool that empowers you to monitor
changes to your files and collaborate seamlessly on projects.

• Types of VCS (e.g. Subversion, CVS, Mercurial, git)

• Advantages:

• Chronological record

• Easily to revert

• Collaborate efficiently

Understanding Version Control
A brief history

• 1970s-1980s: Emergence of early systems like IBM's Source Code Control
System (SCCS) and the Revision Control System (RCS).

• 1990s: Development of Concurrent Versions System (CVS), supporting
concurrent work by multiple developers.

• Early 2000s: Introduction of Subversion (SVN), offering atomic commits and
enhanced branching and merging capabilities.

• 2005: Birth of Git by Linus Torvalds, focusing on speed, efficiency, and distributed
version control. Git quickly became the global standard for software development.

• „Version Control Light“ - Various Cloud providers since 2007

Introduction to Git

Introduction to Git
Git is a powerful version control system

• Tracks changes made to files over time

• Allows creation of branches for independent work

• Facilitates seamless collaboration and merging of changes

Introduction to Git
Basic Git Commands

• git init: Initialize a new Git repository

• git status: Check the status of your repository

• git add: Add changes to the staging area

• git commit: Create a new commit with the staged changes

• git log: View a log of your commit history

• git diff: Compare changes between different versions of your files

Introduction to Git
Real-World Applications of Git

• Academia: Tracking changes in research papers and collaboration

• Data Science: Managing code and data, fostering team collaboration

• Design: Version controlling creative work and collaboration

• Writing: Tracking writing versions and collaboration with editors and authors

Git Basics

Git Basics
Git Terminology

• Repository: Container for your project, holding all files, directories, and
history of changes.

• Commit: Snapshot of your project's files at a specific point in time, including
changes made since the last commit.

• Branch: Parallel version of your repository, allowing work on new features or
changes without affecting the main codebase.

Git Basics
Three Main Stages of Git

• Working Directory: Where you make changes to your code.

• Staging Area: Temporary holding space for reviewing and selecting changes
for the next commit.

• Repository: Stores snapshots of your project's files, creating a history of
commits.

• Remote Repository: Copy of the repository stored on a remote server,
enabling collaboration, backup, sharing, and pulling changes.

Git Basics
What is a Commit?

• Definition: A snapshot of your project's files at a particular moment in time.

• Contents: Changes made to the files since the last commit, metadata, and a
unique identifier (SHA).

• Linear History: Commits are stored sequentially, helping track progress,
collaborate, and revert to previous project versions.

Git Basics
What is a Branch?

• Definition: A parallel version of your repository for independent work.

• Creating a Branch: Starts based on the current state of the repository.

• Isolation: Allows experimentation with new features or changes without
impacting the main version.

Git Workflow

Git Workflow
Key Concepts

• Git operates with a local repository on your machine.

• Changes are stored locally until you use the `git push` command.

Git Workflow
Example Workflow

1. Initialize a new Git repository using the git init command.

2. Make changes to the project files.

3. Use the git status command to see the changes made in the working
directory.

4. Use the git add command to add changes to the staging area.

5. Commit your changes using the git commit command.

6. View the commit history using the git log command.

Git Workflow
Additional Commands

• git diff: See the differences between the working directory and the latest
commit.

• git show: See the details of a specific commit.

• git log !--all !--graph !--oneline: Show a graphical representation of
the commit history, including all branches and commits.

Hands On

E1
Basic git configuration

• Open https://training.hub.gfbio.dev in your browser

• Go into your terminal Initially set up your user:

• git config !--global user.name "Your Name"

• git config !--global user.email "your.mail@example.com"

• git config !--global init.defaultBranch main

• Verify that your git user and mail are set correctly

• git config !--list

https://training.hub.gfbio.dev

E2
• Create your first repository

• Create a new directory inside of your terminal for your project

• Initialize a new git repository in that directory by running the command
`git init`

• In the directory you initialized as a git reposiory create a new file called
`README.md`

• Fill the file with some content

E3
Create your first commit

• Modify the README.md file and save it

• Add this file to the staging area with git add README.md

• Now you can commit via git commit !--message "Your specific
commit message" to the repository

• Repeat this process 2 more times and choose good commit messages each
time.

Multiline Commit Message
E4

• Modify your `README.md` file and save it.

• Add the file to the staging area

• When commiting the file ommit the —message part. This will open an editor.

• Within this editor you may write longer commit messages. The first line will be
most prominent, therefore set is wisely.

• When you are done writing your message, save and close the file (`Ctrl+x` for
nano, `:wq` for vi/vim)

• Take a look at `git log` now.

E5
Displaying differences

• When entering git diff in the terminal you will see the difference between
of the unstaged files and the rest of your repository

• By using git diff ![<commit hash>|<branch!>] you may compare the
current state of the repository with a specific commit or branch

• With git diff ![<commit hash>|<branch!>] ![<commit hash>|<branch!>]
You can compare branches with branches, commits with commits, branches
with commits and the other way around.

Day 2
Branching, Collaboration and

Advanced Topics

Git Branching and Merging

Git Branching and Merging
What are Git Branches again?

• Git branches are separate lines of development.

• Developers can work on different features or bug fixes simultaneously.

• Branches don't impact the main codebase until merged.

• Completed work can be merged back into the main branch.

Git Branching and Merging
Creating a Branch

• Creating a Branch: Use git switch !--create <branch-name> to create a new
branch.

• Switching Between Branches: Use git switch <branch-name> to switch to a
different branch. Changes can be made to the branch files using `git add` and `git
commit`.

• Merging Branches: Use git merge <branch-name> to merge changes from a
branch back into the main branch. This creates a new commit representing the merge.

• Handling Merge Conflicts: Conflicts occur when the same lines of code are modified
in both branches. Git marks conflicts in files with special markers, and they must be
resolved manually.

Git Branching and Merging
Merge Strategies

• Fast-Forward Merge: Moves the current branch to the latest commit of the
branch being merged when branches have not diverged.

• Merge Commit: Creates a new commit with multiple parents when merging
diverged branches.

• Forcing a Merge Commit: Use git merge !--no-ff to force a merge
commit even when a fast-forward merge is possible.

• Squashing Commits: Combine all branch commits into a single commit with
git merge !--squash.

Git Branching and Merging
Rebasing

• Include commits from other branches on my work

Current state of the repository

Git Branching and Merging
Rebasing

Creating a branch, doing work and merging without rebase

Using git rebase before merging

Git Branching and Merging
Rebasing

Resulting graph of main branch with rebasing

Resulting graph of main branch without rebasing

Collaborative Workflows

Collaborative Workflows
Project Factors to Consider

• Project Type & Size: Match the workflow to your project's complexity and
scale.

• Team Dynamics: Ensure the workflow fits your team's size and collaboration
style.

• Developer Expertise: Choose a workflow that suits your team's Git
proficiency.

• Agility vs. Structure: Decide on the level of flexibility and organization your
project needs.

• Project Lifecycle: Adjust the workflow according to your project's maturity.

Collaborative Workflows

• main only

• main/dev

• Feature Branch/Forking

• GitHub/GitLab Flow

• Trunk-Based Development

• Gitflow

Collaborative Workflows

Collaborative Workflows
main/dev

Collaborative Workflows
Feature Branch/Forking

Collaborative Workflows
GitHub/GitLab Flow

Collaborative Workflows
Trunk-Based Development

Collaborative Workflows
Gitflow

Remote Repositories

Remote Repositories
GitHub and GitLab

• Web-based interface for viewing and editing files

• Collaborative coding with team members

• Built-in code review tools

• Issue tracking and project management

• Automatic backups and versioning of code

Remote Repositories
Features

• More Features

• Pull/Merge Requests

• Collaboration

• Wikis and Pages

• Continuous Integration

• More…

Remote Repositories
Working with remotes

• git clone: Copy the default branch to your drive

• git fetch: Update the current branch of the local repository with changes from
remote

• git pull: Update the current branch of the local repository and working area
with changes from remote

• git push: Push the current branch to the remote, with all committed changes

GitHub/GitLab

Advanced Topics

Advanced Topics
Troubleshooting and Special Files

• Troubleshooting: Common issues include conflict resolution, unwanted
commits, and recovering lost commits. Understanding how to troubleshoot
these issues is crucial for effective Git usage.

• Special Files: Git and GitHub treat certain files differently, using them for
configuring repositories and providing documentation. These include
`.gitignore` and `README.md`.

Advanced Topics
Rebasing, Tags, and Stashing

• Rebasing: Allows you to integrate changes from one branch into another by
reapplying commits. Useful for keeping your branch up to date with the main
branch without creating a new merge commit.

• Tags: Labels you can apply to specific commits. Useful for marking significant
versions of your code, such as release versions.

• Stashing: Allows you to store your work in progress and switch to another
branch or address unexpected changes. Useful when navigating complex
workflows and addressing unforeseen challenges.

Wrap-up and
Next Steps

